Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Ital J Pediatr ; 50(1): 84, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650007

RESUMEN

BACKGROUND: The COVID-19 pandemic have impacts on the prevalence of other pathogens and people's social lifestyle. This study aimed to compare the pathogen, allergen and micronutrient characteristics of pediatric inpatients with pneumonia prior to and during the COVID-19 pandemic in a large tertiary hospital in Shanghai, China. METHODS: Patients with pneumonia admitted to the Department of Pediatric Pulmonology of Xinhua Hospital between March-August 2019 and March-August 2020 were recruited. And clinical characteristics of the patients in 2019 were compared with those in 2020. RESULTS: Hospitalizations for pneumonia decreased by 74% after the COVID-19 pandemic. For pathogens, virus, mycoplasma pneumoniae (MP) and mixed infection rates were all much lower in 2020 than those in 2019 (P < 0.01). Regarding allergens, compared with 2019, the positive rates of house dust mite, shrimp and crab were significantly higher in 2020 (P < 0.01). And for micronutrients, the levels of vitamin B2, B6, C and 25-hydroxyvitamin D (25(OH)D) in 2020 were observed to be significantly lower than those in 2019 (P < 0.05). For all the study participants, longer hospital stay (OR = 1.521, P = 0.000), milk allergy (OR = 6.552, P = 0.033) and calcium (Ca) insufficiency (OR = 12.048, P = 0.019) were identified as high-risk factors for severe pneumonia by multivariate analysis. CONCLUSIONS: The number of children hospitalized with pneumonia and incidence of common pathogen infections were both reduced, and that allergy and micronutrient status in children were also changed after the outbreak of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Niño , China/epidemiología , Preescolar , Hospitalización/estadística & datos numéricos , Lactante , SARS-CoV-2 , Neumonía/epidemiología , Adolescente
2.
Small ; : e2400069, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634246

RESUMEN

The normal operation of organelles is critical for tumor growth and metastasis. Herein, an intelligent nanoplatform (BMAEF) is fabricated to perform on-demand destruction of mitochondria and golgi apparatus, which also generates the enhanced photothermal-immunotherapy, resulting in the effective inhibition of primary and metastasis tumor. The BMAEF has a core of mesoporous silica nanoparticles loaded with brefeldin A (BM), which is connected to ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and folic acid co-modified gold nanoparticles (AEF). During therapy, the BMAEF first accumulates in tumor cells via folic acid-induced targeting. Subsequently, the schiff base/ester bond cleaves in lysosome to release brefeldin A and AEF with exposed EGTA. The EGTA further captures Ca2+ to block ion transfer among mitochondria, endoplasmic reticulum, and golgi apparatus, which not only induced dysfunction of mitochondria and golgi apparatus assisted by brefeldin A to suppress both energy and material metabolism against tumor growth and metastasis, but causes AEF aggregation for tumor-specific photothermal therapy and photothermal assisted immunotherapy. Moreover, the dysfunction of these organelles also stops the production of BMI1 and heat shock protein 70 to further enhance the metastasis inhibition and photothermal therapy, which meanwhile triggers the escape of cytochrome C to cytoplasm, leading to additional apoptosis of tumor cells.

3.
Nat Metab ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609677

RESUMEN

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.

4.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436464

RESUMEN

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Conectoma , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Miedo
5.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520330

RESUMEN

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Asunto(s)
Proteínas Portadoras , Dióxido de Silicio , Dióxido de Silicio/química , Análisis Espectral , Microscopía de Fuerza Atómica , Propiedades de Superficie
6.
Urolithiasis ; 52(1): 44, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451326

RESUMEN

Urolithiasis is closely linked to lifestyle factors. However, the causal relationship and underlying mechanisms remain unclear. This study aims to investigate the relationship between lifestyle factors and the onset of urolithiasis and explore potential blood metabolite mediators and their role in mediating this relationship. In this study, we selected single nucleotide polymorphisms (SNPs) as instrumental variables if they exhibited significant associations with our exposures in genome-wide association studies (GWAS) (p < 5.0 × 10-8). Summary data for urolithiasis came from the FinnGen database, including 8597 cases and 333,128 controls. We employed multiple MR analysis methods to assess causal links between genetically predicted lifestyle factors and urolithiasis, as well as the mediating role of blood metabolites. A series of sensitivity and pleiotropy analyses were also conducted. Our results show that cigarettes smoked per day (odds ratio [OR] = 1.159, 95% confidence interval [CI] = 1.004-1.338, p = 0.044) and alcohol intake frequency (OR = 1.286, 95% CI = 1.056-1.565, p = 0.012) were positively associated with increased risk of urolithiasis, while tea intake (OR = 0.473, 95% CI = 0.299-0.784, p = 0.001) was positively associated with reduced risk of urolithiasis. Mediation analysis identifies blood metabolites capable of mediating the causal relationship between cigarettes smoked per day, tea intake and urolithiasis. We have come to the conclusion that blood metabolites serve as potential causal mediators of urolithiasis, underscoring the importance of early lifestyle interventions and metabolite monitoring in the prevention of urolithiasis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Urolitiasis , Humanos , Análisis de la Aleatorización Mendeliana , Estilo de Vida , Urolitiasis/etiología , Urolitiasis/genética ,
7.
Mem Cognit ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308161

RESUMEN

Although previous studies have well established that audiovisual enhancement has a promoting effect on working memory and selective attention, there remains an open question about the influence of audiovisual enhancement on attentional guidance by working memory. To address this issue, the present study adopted a dual-task paradigm that combines a working memory task and a visual search task, in which the content of working memory was presented in audiovisual or visual modalities. Given the importance of search speed in memory-driven attentional suppression, we divided participants into two groups based on their reaction time (RT) in neutral trials and examined whether audiovisual enhancement in attentional suppression was modulated by search speed. The results showed that the slow search group exhibited a robust memory-driven attentional suppression effect, and the suppression effect started earlier and its magnitude was greater in the audiovisual condition than in the visual-only condition. However, among the faster search group, the suppression effect only occurred in the trials with longer RTs in the visual-only condition, and its temporal dynamics were selectively improved in the audiovisual condition. Furthermore, audiovisual enhancement of memory-driven attention evolved over time. These findings suggest that semantically congruent bimodal presentation can progressively facilitate the strength and temporal dynamics of memory-driven attentional suppression, and that search speed plays an important role in this process. This may be due to a synergistic effect between multisensory working memory representation and top-down suppression mechanism. The present study demonstrates the flexible role of audiovisual enhancement on cognitive control over memory-driven attention.

9.
Neuroscience ; 544: 28-38, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38423162

RESUMEN

Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-ß(Aß) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aß protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.


Asunto(s)
Enfermedad de Alzheimer , Electroacupuntura , Neocórtex , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Electroacupuntura/métodos , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Neocórtex/diagnóstico por imagen , Neocórtex/metabolismo , Aprendizaje Espacial , Modelos Animales de Enfermedad , Ratones Transgénicos
10.
ACS Nano ; 18(10): 7596-7609, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38415583

RESUMEN

The compact design of an environmentally adaptive battery and effectors forms the foundation for wearable electronics capable of time-resolved, long-term signal monitoring. Herein, we present a one-body strategy that utilizes a hydrogel as the ionic conductive medium for both flexible aqueous zinc-ion batteries and wearable strain sensors. The poly(vinyl alcohol) hydrogel network incorporates nano-SiO2 and cellulose nanofibers (referred to as PSC) in an ethylene glycol/water mixed solvent, balancing the mechanical properties (tensile strength of 6 MPa) and ionic diffusivity at -20 °C (2 orders of magnitude higher than 2 M ZnCl2 electrolyte). Meanwhile, cathode lattice breathing during the solvated Zn2+ intercalation and dendritic Zn protrusion at the anode interface are mitigated. Besides the robust cyclability of the Zn∥PSC∥V2O5 prototype within a wide temperature range (from -20 to 80 °C), this microdevice seamlessly integrates a zinc-ion battery with a strain sensor, enabling precise monitoring of the muscle response during dynamic body movement. By employing transmission-mode operando XRD, the self-powered sensor accurately documents the real-time phasic evolution of the layered cathode and synchronized strain change induced by Zn deposition, which presents a feasible solution of health monitoring by the miniaturized electronics.

11.
BMC Urol ; 24(1): 44, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374098

RESUMEN

OBJECTIVES: To compare the efficacy and safety of thulium fiber laser (TFL) to holmium: YAG (Ho: YAG) laser in ureteroscopic lithotripsy for urolithiasis. METHODS: PubMed, Web of Science, Embase, CENTRAL, SinoMed, CNKI database, VIP and Wanfang Database were systematically searched for all relevant clinical trials until September 2023. References were explored to identify the relevant articles. Meta-analysis was carried out for the retrieved studies using RevMan5.4.1 software, and the risk ratio, mean difference and 95% confidence interval were expressed. Statistical significance was set at p < 0.05. The main outcomes of this meta-analysis were stone-free rate (SFR), perioperative outcomes and intraoperative or postoperative complications. RESULTS: Thirteen studies, including 1394 patients, were included. According to the results of pooled analysis, TFL was associated with significantly higher stone-free rate (SFR) [0.52, 95% CI (0.32, 0.85), P = 0.009], shorter operation time [-5.47, 95% CI (-8.86, -2.08), P = 0.002], and less stone migration [0.17, 95% CI (0.06, 0.50), P = 0.001]. However, there was no significant difference in terms of the laser time, duration of hospital stay, drop of hemoglobin level, total energy, postoperative ureteral stenting, the incidence of intraoperative complications or postoperative complications between TFL and Ho: YAGs. CONCLUSION: The findings of this study demonstrated several advantages of TFL in terms of higher SFR, shorter operative time and less stone migration. TRIAL REGISTRATION: The protocol of this systematic review was listed in PROSPERO ( www.crd.york.ac.uk/PROSPERO ) (Protocol number: CRD42022362550).


Asunto(s)
Láseres de Estado Sólido , Litotripsia por Láser , Litotricia , Humanos , Láseres de Estado Sólido/uso terapéutico , Tulio , Litotripsia por Láser/métodos , Ureteroscopía/métodos , Complicaciones Posoperatorias/epidemiología
12.
Environ Res ; 250: 118469, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354884

RESUMEN

Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.

13.
Front Neurol ; 15: 1309691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414554

RESUMEN

Background: Preoperative imaging for some unusual lesions in the sellar region can pose challenges in establishing a definitive diagnosis, impacting treatment strategies. Methods: This study is a retrospective analysis of eight cases involving unusual sellar region lesions, all treated with endoscopic endonasal transsphenoidal surgery (EETS). We present the clinical, endocrine, and radiological characteristics, along with the outcomes of these cases. Results: Among the eight cases, the lesions were identified as follows: Solitary fibrous tumor (SFT) in one case, Lymphocytic hypophysitis (LYH) in one case, Cavernous sinus hemangiomas (CSH) in one case, Ossifying fibroma (OF) in two cases; Sphenoid sinus mucocele (SSM) in one case, Pituitary abscess (PA) in two cases. All patients underwent successful EETS, and their diagnoses were confirmed through pathological examination. Postoperatively, all patients had uneventful recoveries without occurrences of diabetes insipidus or visual impairment. Conclusion: Our study retrospectively analyzed eight unusual lesions of the sellar region. Some lesions exhibit specific imaging characteristics and clinical details that can aid in preoperative diagnosis and inform treatment strategies for these unusual sellar diseases.

14.
Exp Brain Res ; 242(4): 809-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400993

RESUMEN

It is well known that information on stimulus orientation plays an important role in sensory processing. However, the neural mechanisms underlying somatosensory orientation perception are poorly understood. Adaptation has been widely used as a tool for examining sensitivity to specific features of sensory stimuli. Using the adaptation paradigm, we measured event-related potentials (ERPs) in response to tactile orientation stimuli presented pseudo-randomly to the right-hand palm in trials with all the same or different orientations. Twenty participants were asked to count the tactile orientation stimuli. The results showed that the adaptation-related N60 component was observed around contralateral central-parietal areas, possibly indicating orientation processing in the somatosensory regions. Conversely, the adaptation-related N120 component was identified bilaterally across hemispheres, suggesting the involvement of the frontoparietal circuitry in further tactile orientation processing. P300 component was found across the whole brain in all conditions and was associated with task demands, such as attention and stimulus counting. These findings help provide an understanding of the mechanisms of tactile orientation processing in the human brain.


Asunto(s)
Electroencefalografía , Percepción del Tacto , Humanos , Potenciales Evocados/fisiología , Tacto/fisiología , Encéfalo/fisiología , Atención/fisiología , Percepción del Tacto/fisiología
15.
Microbiome ; 12(1): 27, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38350953

RESUMEN

BACKGROUND: Seagrasses offer various ecosystem services and possess high levels of primary productivity. However, the development of mariculture has affected the homeostasis of seagrass meadow ecosystems. Plant-microbiome associations are essential for seagrasses health, but little is known about the role of environmental microbiomes and how they affect seagrass in a mariculture environment. In this study, we investigated the influence of mariculture on the rhizosphere and seawater microbiome surrounding Zostera marina and focused on the bacterial, eukaryotic, and fungal components in the composition, diversity, metabolism, and responses to mariculture-related environmental factors. RESULTS: Significant differences in the composition, richness, diversity, and internal relations of the bacterial community between the seawater and rhizosphere sediment surrounding Z. marina were observed, while differences in the eukaryotic and fungal communities were less significant. More complex bacterial and fungal co-occurrence networks were found in the seawater and rhizosphere sediment of the Saccharina japonica (SJ) and sea cucumber (SC) culture zones. The seawater in the SJ zone had higher levels of dissimilatory and assimilatory nitrate reduction, denitrification, and nitrogen fixation processes than the other three zones. The assimilatory sulfate reduction enzymes were higher in the rhizosphere sediments of the SJ zone than in the other three zones. Tetracycline, sulfonamide, and diaminopyrimidine resistance genes were enriched in the mariculture SJ and SC zones. CONCLUSIONS: Our findings might contribute to a better understanding of the effects of mariculture on the seagrass and the meadow ecosystems and thus revealing their potential operating mechanisms. These insights may serve to raise awareness of the effects of human activities on natural ecosystems, regulation of antibiotic usage, and environmental restoration. Video Abstract.


Asunto(s)
Algas Comestibles , Laminaria , Microbiota , Zosteraceae , Humanos , Rizosfera , Zosteraceae/microbiología , Zosteraceae/fisiología , Agua de Mar/microbiología , Microbiota/genética , Bacterias/genética
16.
Transl Vis Sci Technol ; 13(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165719

RESUMEN

Purpose: The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods: We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results: The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions: This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance: These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.


Asunto(s)
Neovascularización Coroidal , Enfermedades de la Retina , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Proliferación Celular , Células Cultivadas , Neovascularización Coroidal/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Fosforilación , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Angew Chem Int Ed Engl ; 63(12): e202318784, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38291557

RESUMEN

Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.


Asunto(s)
Antineoplásicos , Depsipéptidos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Depsipéptidos/farmacología , Antineoplásicos/farmacología , Relación Estructura-Actividad
18.
Q J Exp Psychol (Hove) ; 77(2): 418-432, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37092806

RESUMEN

Previous studies have separately found that exogenous orienting decreases multisensory integration (MSI), while endogenous orienting enhances MSI. It is currently unclear, however, why the two orientations have opposite effects on MSI. In the current study, we investigated the interaction between spatial attention and MSI in two experiments based on the cue-target paradigm. Experiment 1 separated exogenous and endogenous orienting to investigate the effect of spatial attention on MSI by varying the predictability of the cue. Experiment 2 further explored the effect of endogenous orienting on MSI. We found that exogenous orienting induced by the directionality of the cue decreased MSI, while endogenous orienting induced by the predictability of the cue enhanced MSI. The role of spatial orienting need and spatial attention bias in the modulation of MSI by exogenous and endogenous orienting was discussed. The present study sheds new light on how spatial attention modulates MSI processes.


Asunto(s)
Señales (Psicología) , Percepción Espacial , Humanos , Tiempo de Reacción , Estimulación Luminosa , Orientación
19.
Adv Sci (Weinh) ; 11(4): e2306044, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032137

RESUMEN

The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.


Asunto(s)
Depsipéptidos , Profármacos , Péptido Hidrolasas , Endopeptidasas , Profármacos/farmacología
20.
Small ; 20(16): e2307310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38039438

RESUMEN

Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Nanopartículas/química , Estrés Oxidativo , Neoplasias/terapia , Inmunoterapia , Mitocondrias/metabolismo , Iones , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...